ENARIS

Maze

mobilis
-T TU $U_{G r a z}$
(e) $\begin{aligned} & \text { OESTERREICHISCHE } \\ & \text { COMPUTER GESELLSCHAFT } \\ & \text { AUSTRIAN } \\ & \text { COMPUTER SOCIETY }\end{aligned}$

European Union - European Regional Development Fund

Core Rules

enaris The Game

- Agent: Robot
- Actions: Take adjacent path
- State: Maze, robot Position, Q-values
- Rewards: Numbers written on pathways
- Goal: reach battery reliably

enaris The Game

- Whenever the robot reaches a new intersection, it writes a random number (use dice) on each path
- The robot then takes the path with the highest number

enazis The Game

- Whenever the robot reaches a dead end, it writes - 1

enaris The Game

- Whenever the robot reaches a dead end, it writes - 1
- Then the robot updates the number of the path where it came from to the new highest value (-1) minus one ($-1-1=-2$)

enaris The Game

- In case of a dead end, the robot then returns to the previous crossing and continues by choosing the highest number

enaris The Game

- New crossing -> random numbers

enaris The Game

- New crossing - > random numbers
- Update pathway to new highest (6) minus one $(6-1=5)$

enaris The Game

- New crossing -> random numbers
- Update pathway to new highest (6) minus one (6-1=5)
- If there are two or more biggest numbers, the robot choses a random one (in this case: up)

enaris The Game

- The robot continues until it reaches it's goal

enaris The Game

- The robot continues until it reaches it's goal

enaris The Game

- The robot continues until it reaches it's goal

enazis The Game

- The goal in this maze has a value of 100

enazis The Game

- The goal in this maze has a value of 100
- Don't forget to update the path!

enazis The Game

- The goal in this maze has a value of 100
- Don't forget to update the path!
- Then the robot returns to the first room and starts another round

enaris The Game

- Continue until the robot doesn't learn anything new (write or correct numbers)

enaris The Game

- Finally, the robot has learned a reliable path to its goal

Exploration vs Exploitation

Enais The Problem

- Some actions can have an immediate positive effect but a long term negative effect

Enazis The Problem

- Some actions can have an immediate positive effect but a long term negative effect
- E.g. the robot takes a path and continues walking, but many steps later it turns out to be a dead end.

enais The Problem

- Some actions can have an immediate positive effect but a long term negative effect
- E.g. the robot takes a path and continues walking, but many steps later it turns out to be a dead end.
- Some actions might only have a small immediate positive effect but a big long term positive effect
- Some actions can have an immediate positive effect but a long term negative effect
- E.g. the robot takes a path and continues walking, but many steps later it turns out to be a dead end.
- Some actions might only have a small immediate positive effect but a big long term positive effect
- E.g. the robot finds a rewarding battery, but there would be an even more rewarding one along the next path

The Solution

- Find a balance between exploiting already learned information and exploring new possibilities

enaris The Solution

- Find a balance between exploiting already learned information and exploring new possibilities
- E.g. instead of always choosing the path with the highest number, the robot could have a $\mathbf{2 5 \%}$ chance of taking a random path

ENARES The Solution

- Find a balance between exploiting already learned information and exploring new possibilities
- E.g. instead of always choosing the path with the highest number, the robot could have a $\mathbf{2 5 \%}$ chance of taking a random path
- This exploration rate can also be dynamic, so that it is high in the beginning but gets lower as the robot improves its understanding of the environment

