
Module 5

Reinforcement Learning

"By using a maze in which a robot is rewarded by finding a battery, this exercise
demonstrates that RL is not as straight forward as one might think."



About the Module

This module is about Reinforcement Learning (RL). The goal is to provide the
students with a basic understanding of what RL is, how it works and what
common problems and pitfalls are. The focus lies more on practical exercises,
therefore students will on the one hand take the role of self learning algorithms
and experience how the training process works, and on the other hand play
against and train learning AIs.

Objectives

Students will be able to...
...explain the basic idea of RL
...understand the core RL-loop and decisions based on Q-values
...estimate if an application is using RL
...name problems and limitations of RL

Agenda

Time Content
30 min Introduction
20 min Exercise - Coin Game
20 min Exercise - Hexapawn
20 min Exercise - Menace
30 min Exercise - Maze
15 min Quiz - True or False?



Introduction

The Introduction is all about students becoming familiar with basic concepts and
terms used in Reinforcement Learning (RL). It is based on the slides, which
introduce not only common applications but the general idea of how an AI can
learn by itself by performing and evaluating actions.

Real World Examples
(Slides 2 - 6)

The slides start by introducing RL using a short video about a self learning hide
and seek AI of OpenAI. If the students don't understand english well enough, either
auto translated subtitles can be used or the teacher can take care of
translating/explaining what happens.
The main point to bring across is that in RL the AI learns by itself, without direct
guidance of the programmers. The agents in the video where never told how to
do things, only what they can do and what their goal is.

After the video, the next example is Leela Chess Zero (Lc0), a modern chess AI,
trained using reinforcement learning. While traditional chess AIs had static
functions to evaluate board positions (like getting fixed points for material
differences and piece positions), Lc0 learned what good positions are by playing
millions of games against itself and other players, and therefore can make better
decisions on what actions to take. It is important to state that modern chess
engines are far superior to human players, even the best grandmaster players
can be beaten using a smartphone.
The reason why games are quite popular in RL research is, that there are well
defined rules which makes it easier to define concrete actions and goals, which
are needed for RL to work. This will be explained in more detail after the example
slides.

As chess engines still mostly calculate moves in a similar way they did in the late
90s, when they started to beat human players consistently3, they sometimes are
downplayed due to the 'simplicity' of the game. Still RL algorithms evolved and
nowadays can go toe to toe to human players in much more complex scenarios.
Therefore, the third example is about AlphaStar, an AI from Google's Deepmind
research department, which has learned to play a complex modern computer
game up to a level comparable to the best human players.4 Given that there are
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roughly 1026 legal actions at every point in time (compared to chess with an
average of less than 40), it is astounding that the AI can choose the best ones
while adhering to the same limitations a human player has (limited vision,
reaction time).

The final example is a more practical one about custom advertisement (Ad). It
demonstrates, that RL can be used in many different ways, in this case as a
revenue optimization by learning which Ads are most clicked (or hovered over)
and adapting future ads displayed to maximize the chance the user will klick on
an Ad.

There are many more examples of use cases for RL, like training self driving cars
using simulations, but these examples are a good enough starting point to now
tackle the question, how an algorithm can actually learn by itself.

RL Basics
(Slides 7 - 20)

To be able to understand the basics of RL, one must know at least some
definitions, which are introduced in the first few slides. Then the game TicTacToe is
used as an example

Agent
An agent describes the intelligent entity that interacts with the environment
and has to make sensible decisions. This is the part of a program that
incorporates all the AIs logic and knowledge.
In TicTacToe the agent would be the AI player.

Environment
For an agent to learn it needs a clearly defined environment. Usually the
environment is some kind of simulation of a real environment (like a
simulated street for a car to learn driving) or a game.
In TicTacToe the environment is the game board with the drawings (X,O) on
it.

Action
At each point in time, the agent has to decide which action to take. The
available actions must be known at any time, the AI then has to learn to
choose the best one.
In TicTacToe every empty tile corresponds to an action of drawing ones
symbol (X,O) on the tile.



State
A state is a numerical representation of meaningful parts of the environment.
As computers only work with numbers, critical parts of the environment can
be abstracted to be understandable to the AI.
In TicTacToe the state could be a number for each of the nine tiles (e.g. 0 =
empty, 1 = X, 2 = O) and maybe also a number of whose turn it is (1 or 2). In
another example, the coin game, which will be used in the following exercise,
the state is simply the number of coins on the table.
This is usually the most abstract of the definitions, it will become clearer for
most people during the next exercise.

Reward
The reward is generally a numeric value that depict the quality or outcome of
a state. Usually it is positive in case of a good result and negative in case of a
bad result.
In TicTacToe the reward could be +1 for winning, -1 for losing and 0 for
everything else.

Finally, the students have to think about what agents, states, actions and rewards
are in the following examples. This can be approached in multiple ways ranging
from a simple group discussion, to presentations in small groups, the methods
page contains more ideas.

Leela Chess Zero
The agent is the chess AI, the state consists of numerical values
representing the pieces on the board. Actions are the possible chess moves
and the reward can be a very high/low number for winning/losing and some
numbers in between for how 'good' the position is for the AI.

OpenAI Hide and Seek
The agents are the hiders and seekers, the state includes the position of the
agents as well as of all objects and if they are locked or not. Actions include
moving in different directions, rotating and grabbing/releasing as well as
locking objects. The reward can be the number of seconds the hiders were
not found which can also be used as a negative number for the seekers.

Custom Advertisement
The agents could be individual advertising spots, the state information
about the type of advertising and if the user clicked on it or not. Actions
could include switching to specific topics or to advertise or types of
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advertisements. The reward could be a number indicating if the user clicked
on the add or not.

In reality finding a good representation for the state and available actions is not an easy
task, but a very important one. Choosing badly can result in increased training time and
poorer performance, or even stop the agent from learning all together as crucial
information might be missing. This is not too relevant in the upcoming exercises however, as
there the states and actions are clearly defined already.

Q-Learning
(Slides 21 - 30)

The final slides introduce the concept of Q-learning, as well as the RL interaction
loop. It is based around the concept of action and reaction, where the agent
interacts with the environment by choosing an action to perform. This action
changes the environment and as a result the agent receives the representation of
the new state as well as a reward indicating how good the action was. Given this
new information the agent then might update its behavior and then chooses a
new action to perform. This cycle continues until a goal is reached.

Q-learning is based on the RL interaction loop and stores a quality value (Q-
value) for each pair of state and action. This value indicates how 'good' the action
is given the current state. Therefore, whenever a state is reached, the action with
the highest Q-value can be chosen for optimal behavior. As the Q-value might
not be correct at the beginning (in fact, quite often it is set to a random value for
each action at the beginning), it can be adapted by increasing/decreasing it in
regards to the reward received for performing the action. When this process is
repeated often enough, the Q-values will reach a point, where always the correct
action will be performed.

As long as there are not too many state-action-pairs, this values can be stored in
a table where each row consists of a state and the Q-values of all available
actions.

The table on slide 29 shows a small section og such a Q-table for an exemplary
jump-n-run game. Reaching a diamond is rewarded with +1 and falling into the
water with -1. The next table on slide 30 shows the same situation, but with a more
advanced table which includes future rewards into their action. This means an



action that might result in falling into the water one action later will also get a
small penalty.

This process of adapting the Q-values is called training. While it sometimes is
feasible to train an AI during normal use, quite often the training process is
independent from the final use, as it can take millions of iterations to create
meaningful values.

After all this theory it is time to test the knowledge on real examples, which leads
to the next three exercises, which build on each other.

Material

 RL - Introduction.pdf

References

1. https://openai.com/blog/emergent-tool-use/
2. https://lczero.org
3. https://www.chess.com/article/view/deep-blue-kasparov-chess
4. https://www.deepmind.com/blog/alphastar-mastering-the-real-time-

strategy-game-starcraft-ii
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Coin Game

This exercise provides an introduction into RL learning
using the coin game. To help understand the basic
concept, slides can be used as an introduction. The
game requires some kind of tokens like coins, cones,
treats, ... in a large quantity, so every pair of students
has access to at least 5 of them. The game starts by
having 5 coins on a table and the players alternately
taking one or two of them away. The player taking the
last token loses.

1. Introduce the game

Introduce the game using the slides 1-8 and let the students play a few matches
in pairs.

2. Introduce the AI

Introduce the AI using the slides 9-35. It is recommended to provide the material
(board and actions) beforehand, so the students can see how everything looks
like in reality and also are able to actively play along with the examples.

3. Let them play

Then let the pairs of student play, with one taking the role of the AI, and the other
playing normally. As the games continue more and more actions will be removed
from the AI until nothing but the winning actions are left.

4. Key takeaways

Finally talk about the following key takeaways:

What happens, if some states are never reached (e.g. the player always
chooses the same actions)?

Only states that are reached are learnt from. When the AI does not
encounter a situation during training, it might not find the correct move.
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In this example, where does de AI learn more, by winning or by losing?
By losing, in this example the AI is only punished for losing, never rewarded
for winning, therefore winning has no effect.

Could you change the game so that a win also provides some kind of reward?
Yes, for example by adding new action-stones when the AI wins. Then the AI
will more likely select one of the more successful actions. This will be
demonstrated in the next exercise.

5. Material

 RL - Coin Game.pdf
 RL - Coin Game Board.pdf
 RL - Coin Game Actions.pdf
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Hexapawn

This exercise build on the knowledge of the previous
one (coin game) and is based on the website
https://www.stefanseegerer.de/schlag-das-
krokodil/ and the game Hexapawn. In Hexapawn two
players play against each other on a 3 by 3 board
using only pawns from chess, which can either move
one field straight forward or capture an enemy pawn
diagonally. A player wins by either reaching the
opposite side with one pawn or by preventing the
enemy to make a move (blocking all pawns).

1. Demonstrate the website

First, demonstrate the capabilities of the website and explain the rules of the
game. Especially the settings Response Time and Only possible moves should be
explained, as they help in the following tasks. Furthermore it is vital that students
understand the meaning of the coloured points (correspond to same coloured
action) and see that these points can be removed or added.

2. Let them play

Now it is time to let the students play on their own. The goal is to win as often as
possible, before the AI cannot be beaten. This seems like a simple task, but soon
students will realize they need a good understanding of the inner workings to
achieve over 10 or even over 20 wins. Be careful, when the site is reloaded, the
wins will also reset!

3. Key takeaways

The key takeaways are similar to the coin game, but more pronounced, as
students have to explicitly take actions they have not been used before, to force
the AI into unknown territory. It can also be seen, that the number of possible
states increases quite fast with the number of available actions. It can easily be
envisioned, that on a bigger board (like a chessboard), there are so many

https://www.stefanseegerer.de/schlag-das-krokodil/


possible states (roughly 1044)1 that it is not feasible to train an AI by hand, or even
include all possible states.

When the number of possible states becomes too big, other methods have to be used like

reducing the number of states by using evaluation functions2 to exclude actions that lead

to undesirable states or approximating Q-values using neural networks3.

4. Material

 https://www.stefanseegerer.de/schlag-das-krokodil/

5. References

1. https://tromp.github.io/chess/chess.html
2. https://www.chessprogramming.org/Evaluation
3. https://www.turing.com/kb/how-are-neural-networks-used-in-deep-q-

learning
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MENACE

This exercise again builds on the previous one
(Hexapawn) and introduces a game with even more
states, TicTacToe. As a good introduction the first part
of this video from Matt Parker about MENACE can be
used. It explains the basic idea of MENACE, which is
similar to the Hexapawn example from before, but
instead of working digitally, they store coloured beads
inside physical match boxes.

While it might be an interesting idea to create such a
system with the class, it will probably take quite some
time, not only to create, but also to train to get
meaningful results. Therefore, in this exercise an
online simulator of the system will be used.

1. Introduce MENACE

First, introduce the MENACE system, a RL TicTacToe machine, either by using the
first ~2:20min (or more) this video from Matt Parker or by discussing (or group
work) how the previous example could be modified to fit the game of TicTacToe.

2. Demonstrate the website

Then demonstrate how to use the simulator on the website
https://www.mscroggs.co.uk/menace/, explain especially the meaning of the
numbers and systems to the right (states and q-value of actions, higher = more
likely to be chosen, mirrored states are excluded) and how you can play games
yourself or let the AI play against other AIs (like the random playing AI or a
perfectly playing AI).

3. Let them train their own AI

Given the knowledge of how to use the website, the students now have to train
their own AI, which should be as good as possible.
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4. Talk about the Problems

Soon the students will realize, that even if this sounds like an easy exercise,
probably none of the approaches will lead to a perfectly playing AI. The main
reasons why this occurs are:

The AI simply doesn't encounter some states during training, so that it
doesn't know what a good move is when it encounters them. This happens
for instance if it is only trained against a perfectly playing AI, where it never
learns that it can actually win, so it will not know how to exploit mistakes
when they are made.
The AI learns wrong moves, because the enemy didn't respond properly. For
example it might have learned that a move usually leads to victory, because
the enemy did only bad (or random) moves, but when the enemy plays
correctly, the AI will lose.

The technical problem behind this is exploration vs exploitation1, which will be
explored more in the next exercise.

5. Material

 https://youtu.be/R9c-_neaxeU
 https://www.mscroggs.co.uk/menace/

6. References

1. https://ai-ml-analytics.com/reinforcement-learning-exploration-vs-
exploitation-tradeoff/
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Maze

By using a maze in which a robot is rewarded by
finding a battery, this exercise demonstrates that RL
is not as straight forward as one might think. The
exercise starts with this slides, explaining the scenario
of a robot inside a maze which has to find a battery. In
the beginning the robot will take random turns and
over time it will learn the correct path to its goal. In the
second exercise, the maze has multiple batteries with
different values, which will lead to sub-optimal results,
as explained in the last few slides.

1. Introduce the game

First, introduce the students to the game using the slides 1-18. Then provide each
student (or pair of students) with a copy of the RL Maze Basic, a dice and a pen.

2. Let them play

Then the students have to play multiple rounds, until the path to the battery is
clearly defined. To update values, one can simply cross it out and write the new
value close to it. Some students will be 'lucky' and the path will form very fast, while
with other the robot will go into every dead end before it reaches its goal. If some
students are way too fast, they can try again with a new sheet of the same maze
and see how it behaves differently the second time.

3. Introduce the advanced maze

Provide each student (or pair of students) with a copy of the RL Maze Advanced
and again let them train their robot. Even if there are multiple batteries this time,
the robot still goes back to the beginning whenever it reaches a battery. The
game is over again, if the robot has a clear path to one of the batteries, even if it is
not the one with the highest value.

4. Find out the problem and propose solutions
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When everyone is finished, different robots will have reached different scores. Now
create groups of around 4 students and let them discuss why some robots scored
better than others and work out a possible solution. It might help to group
students with different robot scores together, so they have a better visualization of
the problem. Then each group has to present their findings and solutions.

5. Explain the problem

Finally, use slides 19-26 to discuss the exploration vs exploitation trade-off1 and
possible solutions for this exercise.

6. Optional: Test various solutions

Provide new copies of the RL Maze Advanced so that the groups can test various
new approaches (like different exploration rates).

7. Material

 RL - Maze.pdf
 RL - Maze Basic.pdf
 RL - Maze Advanced.pdf

8. References

1. https://ai-ml-analytics.com/reinforcement-learning-exploration-vs-
exploitation-tradeoff/
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True or False?

This last chapter acts as a recapitulation of the whole module. It is based on a
quiz with ten true or false questions and encourages students to think about all
the aspects they have learned.

The quiz itself consists of slides, showing one question after another before
showing the correct answers. Therefore, students can write down their responses
and then calculate their score in the end. It is highly encouraged to pause after
revealing the answer for every questions to discuss briefly why it is correct or
wrong. Alternatively, this exercise can also be done in groups to further encourage
discussion between students.

Material

 RL - Quiz.pdf
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